BIOSUBSTRATE

SCREENING AND DEMONSTRATION TRIALS

Thayna Mendanha

Postdoc Plant, Food and Climate Department of Food Science

BIOSUBSTRATE THAYNA MENDANHA, PHD 07 DECEMBER 2021 POSTDOC

AGENDA

1. Introduction

2. Screening assays

2.1 In-vitro assay

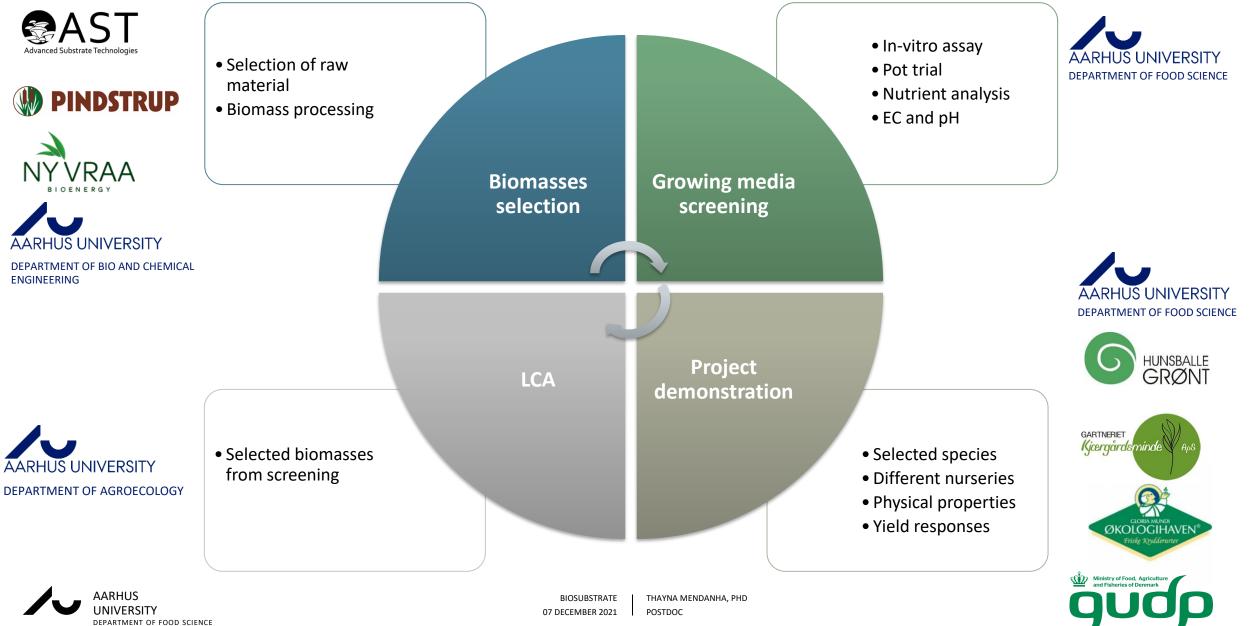
2.2 Greenhouse assay

- 3. Selection results
- 4. Demonstration trials
- 5. Conclusion

2

BACKGROUND

- Soilless cultivation in horticultural bussiness
 - Porous material
 - Free of phytotoxic compounds
 - Good water holding capacity
 - Easy to compact and transport
 - Easily adjusted pH
 - Standardized material
- Environmental concerns
- Growth of the horticultural industry
- Renewable and bio-based material


Northern Hemisphere: Peat-based media

- To develop a **plant growth media** to fully or partially replace the **peat/sphagnum**
- Fulfill a circular economy establishing a Danish self-sufficiency production

Test different

- biomasses (willow, miscanthus, meadow grass, straw, fodder grasses, wood chips)
- **residual products** (fiber fractions from biogasification and protein juice production)

Total candidates: 53 growing media (GM)

ASSAYS

In vitro assay

- Germination counting (24, 48, 72, 84 and 168 hours)
- Root growth measuring (48, 72, 84 hours)

Lettuce (Lactuca sativa)	Chinsese cabbage (Brassica rapa)	Cress (Lepidium sativum)
Gree	enhouse assay	
•	Nutrient composition - Eurofin	S
•	pH_EC of the substrates and d	lilutions

- pH, EC of the substrates and dilutions
- Germination rate
- Plants fresh and dry weight
- Root evaluation

DESIGN OF ASSAYS

Control 100% GM 66% GM 33% GM (Pindstrup 1)

Control 100% GM 66% GM 33% GM

33% GM

66% GM

100% GM

ddH₂O

7

Control

THAYNA MENDANHA, PHD POSTDOC

Total of 180 mixes were tested in 3 years

BIOSUBSTRATE T 07 DECEMBER 2021 P

THAYNA MENDANHA, PHD POSTDOC

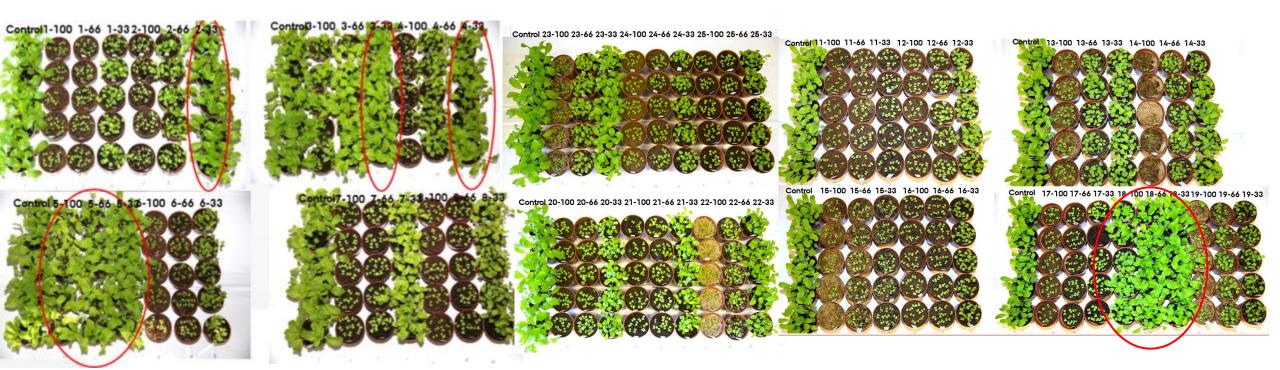
8

GROWING MEDIA 2019

Total of GM tested: **25 new GM** + 1 commercial GM (3 batches)

Growing medium	Test serial number	Raw material	Processing	Provider
1	1	Willow chips from two-year shoots, fine sized	Untreated	Ny Vraa
2	1	Willow chips, medium sized + 15% chicken manure	Composting, 3 months, aeration 5 times	Ny Vraa
3	1	Willow chips, medium sized + 30% chicken manure	Composting, 3 months, aeration 5 times	Ny Vraa
4	1	Willow chips, fine sized + 15% chicken manure	Composting, 3 months, aeration 5 times	Ny Vraa
5	1	Willow chips, fine sized + 30% chicken manure	Composting, 3 months, aeration 5 times	Ny Vraa
6	1	Willow chips, coarse sized	Defibration, mechanical	Pindstrup
7	1	Willow compost, coarse sized	Defibration, mechanical	Pindstrup
8	1	Willow chips, coarse sized, willow compost, chalk	Composting for two years, no aeration, hammer milling with 10 mm screen prior to testing	Ny Vraa
9	1	Willow chips, coarse sized, chalk	Composting for one year, no aeration, hammer milling with 10 mm screen prior to testing	Ny Vraa
10	1	Willow chips, coarse sized, willow compost, chalk	Composting for one year, no aeration, hammer milling with 10 mm screen	Ny Vraa

Growing medium	Test serial number	Raw material	Processing	Provider
11	2	Forest wood chips	Extrusion	AU BCE
12	2	Miscanthus	Extrusion	AU BCE
13	2	Protein extracted grass fiber	Fresh / as received	AU BCE
14	2	Protein extracted grass fiber	Air-dried	AU BCE
15	2	Wheat straw	Extrusion	AU BCE
16	2	Degassed plant based AD digestate fibre	Dewatered, compacted and dried	AST
17	2	Degassed manure based AD digestate fibre	Dewatered, compacted and dried	AST
18	2	Combined livestock and plant based AD digestate fibre	Dewatered, compacted and dried	AST
19	2	Seed grass straw	HTC	AU BCE


Growing medium	Test serial number	Raw material	Processing	Provider
20	3	AD digestate fiber	As received	AU BCE
21	3	Compact fiber	Dewatered and twin screw pressed	AU BCE
22	3	Wood fiber	High temperature, extrusion	Pindstrup
23	3	Wood fiber	High temperature, extrusion	Pindstrup
24	3	Willow chips, fine sized	Extrusion with thermophilic composting	AU BCE
25	3	Miscanthus	Extrusion with thermophilic composting	AU BCE
	AU BO	CE = Aarhus University Biological ar	nd Chemical Engineering;	

BIOSUBSTRATE 07 DECEMBER 2021

AST = Advanced Substrate technologies

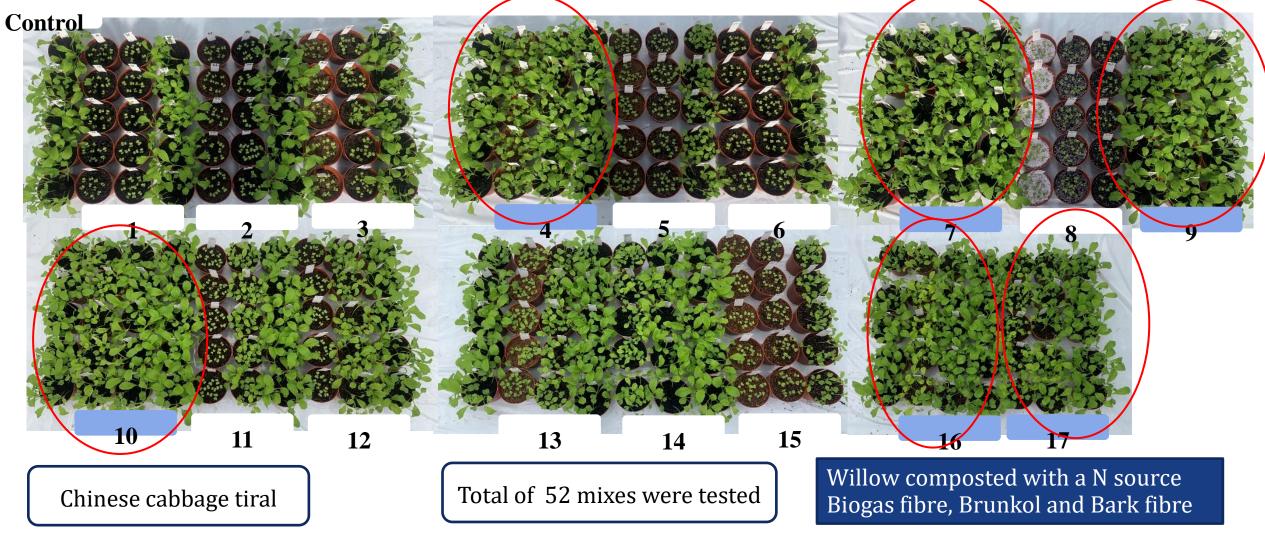
RESULTS – CHINESE CABBAGE (2019)

Chinese cabbage tiral

Total of 78 mixes were tested

Willow composted with a N source

GROWING MEDIA 2020



Sample ID	Planned bag code	Processing	Biomass provider
1	1-1st screen	six month composted spring composted extruded miscanthus	AU
2	2-1st screen	six month composted spring composted extruded willow	AU/ NyVaa
3	3-1st screen	short composted (2 month) green miscanthus	AU
4	4-1st screen	Sven-darker than forest gold	Pindstrup
5	5-1st screen	steam extruded green miscanthus	AU
6	6-1st screen	insitu washing and extrusion spring miscanthus	AU
7	7-1st screen	brunkol	AU
8	9-1st screen	extruded cotton textile, lots of fungi-2020.06.23	AU
9	10a-1st screen	extruded bark (spank bark)	AU/ pinstrup
10	10b-1st screen	extruded bark (barkfris)	AU/ pinstrup
11	11-1st screen	GS 80 AST	AST
12	12-1st screen	GS 70 AST	AST
13	14-1st screen	Forest gold	Pindstrup
14	16-1st screen	willow /polar biochar	AU/ Nyvaa
15	No. 1 from aarslev	willow	Nyvaa
16	No. 2 from aarslev	willow, 15% chicken manure	Nyvaa
17	No. 3 from aarslev	willow, 30% chicken manure	Nyvaa

Ministry of Food, Agricultu and Fisheries of Denmark

RESULTS – CHINESE CABBAGE (2020)

Ministry of Food, Agriculture and Fisheries of Denmark

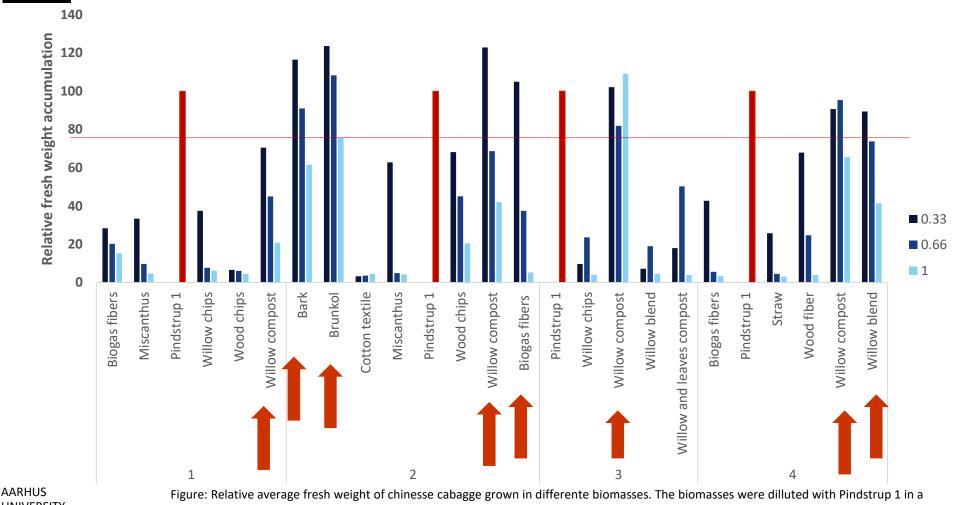
GROWING MEDIA 2021

GM	Description	GM	Description
1	Willow composted with grass (50/50)	8	AST 1 (2v) with 80% TS is based 100% on degasified fiber.
	70/30 Willow composted with grass + extruded willow	9	AST 2 (2v) 75/25 with 80% TS is based on 75% degasified fiber and 25% compromised sawdust
I .≾	50/50 Willow composted with grass + extruded willow		
I 4a	Willow harvested with leaves and composted +chicken manure	10	AST 3 (2v) 75/25 with 80% TS is based on 75% degasified fiber and 25% comprom. AST 3 is similar to AST 2 – the only difference is the
4b	Willow harvested with leaves and composted + NH4		pH regulation by use of organic acidised sawdust
4c	Willow and leaves + insect frass	11	Straw + horse manure
5a	Extruded willow +NH4		Wood fibers + horse manure
5b	Extruded willow + Insect frass		
6	Willow and Insect frass composted		Willow 7 time starter
7	Willow with microorganism (cold compost)	14	Willow 40 times starter

RESULTS – CHINESE CABBAGE (2021)

Chinese cabbage tiral

Total of 53 mixes were tested


Willow composted, Willow composted blend with extruded willow

BIOSUBSTRATE THAYNA 07 DECEMBER 2021 POSTDOC

RESULTS – CHINESE CABBAGE

UNIVERSITY DEPARTMENT OF FOOD SCIENCE

proportion of 33, 66 and 100%.

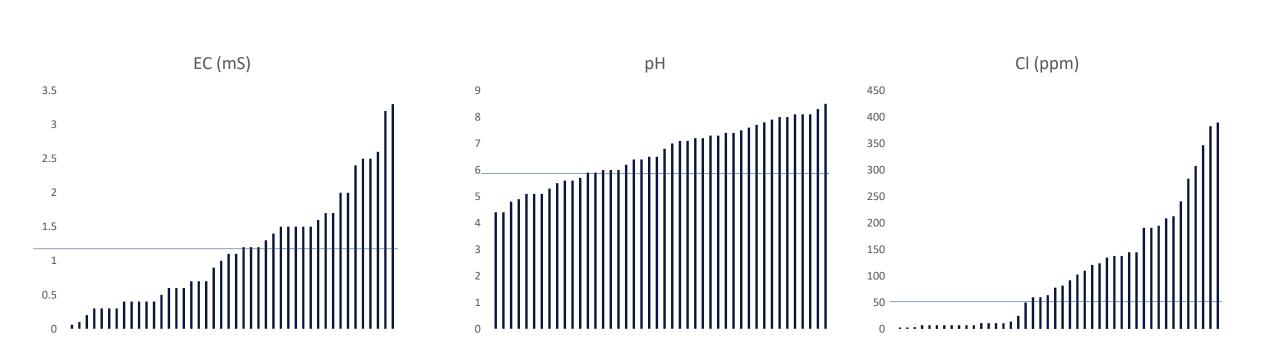
Ministry of Food, Agricult

15

RESULTS – GREENHOUSE

The average of seed germination rate (%) of the three species on day 2 and day 5	5
--	---

Proportion		Lett	uce	Chinese	e cabbage	Cr	ess	
	New medium	Pindstrup 1	D2	D5	D2	D5	D2	D5
	100%	0%	52.6	71.2	63.3	89.8	79.9	88.6
	66.67%	33.33%	67.3	90.6	77.4	97.9	92.8	96.3
	33.33%	66.67%	79.6	91.8	81.9	97.2	94.0	96.6
	Pindstrup 1	100%	94.0	96.0	77.33	97.33	97.33	99.33


The more diluted with a Peatbased GM , the higher the germination rate and dry matter accumulation

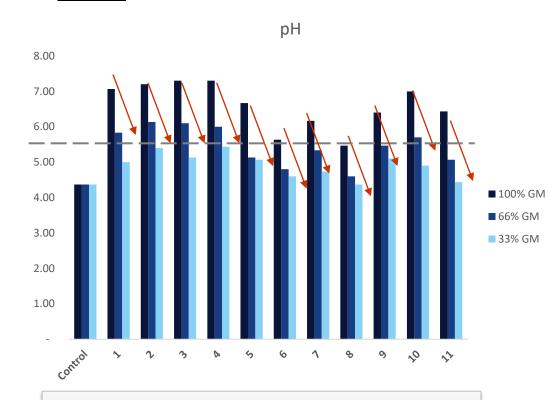
The average of fresh and dry weight per seedling (FW_p and DW_p) from the three species after harvest

Proportion		Lettu	ıce (g)	Chines	e cabbage (g)	C	Cress (g)		
New medium	Pindstrup 1	FW _a	DW _a	FW _a	$\mathbf{DW}_{\mathbf{a}}$	FW _a	DW _a		
100%	0%	0.42	0.032	0.71	0.074	0.45	0.049		
66.67%	33.33%	0.71	0.060	1.30	0.131	0.73	0.08		
33.33%	66.67%	1.63	0.124	2.62	0.258	1.71	0.15		
Pindstrup 1	100%	3.83	0.193	6.24	0.453	3.92	0.28		

RESULTS – GREENHOUSE

Ministry of Food. Agriculture and Fisheries of Denmark

RESULTS – GREENHOUSE


pH was negatively correlated with germination and growth

All species	EC	рН	G2	G5	FW per pot	DW _a	FW _e	DW _e
EC	_	0.520**	-0.185	-0.151	0.128	0.091	0.136	0.098
рН	-	- <	-0.450**	-0.408**	-0.479**	-0.511**	-0.473**	-0.503**
G ₂	-	-	_	0.771**	0.456**	0.505**	0.450**	0.495**
G ₅	-	-	-	-	0.294**	0.335**	0.285*	0.319**
FW _a	-	-	-	-	-	0.974**	1.000**	0.972**
DWa	-	-	-	-	-	-	0.975**	0.999**
FW _e	-	-	-	-	-	-	-	0.973**
Dwe	-	-	-	-	-	-	-	-

Correlation analysis between EC, pH, germination rate and FW and DW accumulation of plants grown in 75 mixes.

PH AND EC

EC (mS/cm) 8000 7000 6000 5000 100% GM 4000 **1** 66% GM 3000 **33%** GM 2000 1000 0 Control \sim \mathcal{V} S \triangleright 5 6 1 θ 9 ~ \sim

By adding 33% raw peat, pH decreased to a commercial desired range

BIOSUBSTRATE THAYNA MENDANHA, PHD 07 DECEMBER 2021 POSTDOC Ministry of Food, Agriculture and Flaheries of Denmark

DEMONSTRATION (2020/2021)

Test selected substrates at commercial growing conditions

Growing media

-Willow composted

-Wood fibers

-Peat

Plant production

-Biomass accumulation

-Fruit yield and size

-Leaf analysis (nutrient levels)

Crops

-Year-round fruit (Strawberry production)

-Organic herbs

(Basil)

-Convetional ornamentals

(Salvie, Geranium, Kalanchoe)

Ministry of Food, Agricult and Fisheries of Denmark

DEMONSTRATION (2020/2021)

Aim to replace 50% of Peat in the mix

1	100% Strawberry substrate from Claus (Control)
2	100% Willow+Chickenpills(20%)
3	100% Willow+Grass
4	50% Willow+chickenpills and 50% Control substrate
5	50% Willow+Grass and 50% Control substrate
6	Improved substrates from Pindstrup (50% Komposteret Pileflis ØKO + 50% peat)
7	Improved substrates with fiber from Pindstrup (50% Træfibre Hobby + 50% peat)

Control

100% (composted

100% (composted

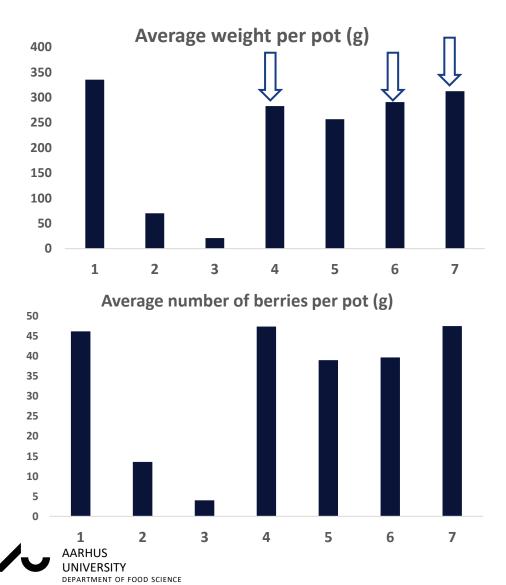
willow+chicken manure) willow+grass)

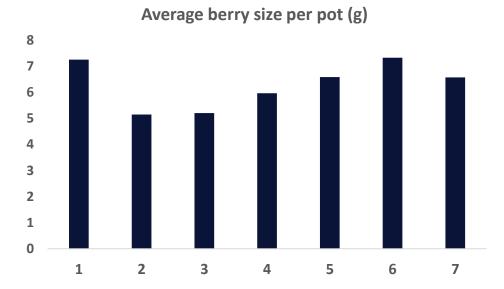
50% Control + 50% (composted willow+chicken manure)

Control

50% Control + 50% (composted willow+grass)

50% Peat + 50% composted willow

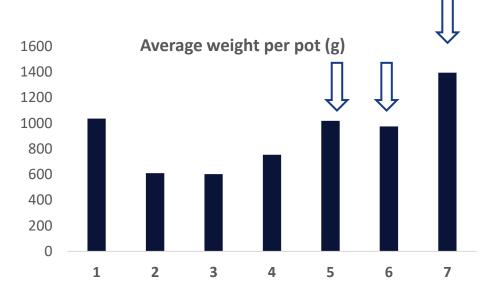

50% Wood fibers + 50% Peat



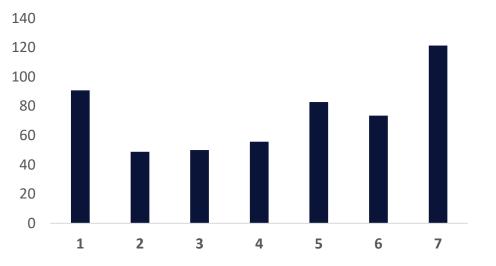
No. 4 and No.7 with equal plant growth as control after 6 weeks – middle of August

Ministry of Food, Agriculture and Fisheries of Denmark

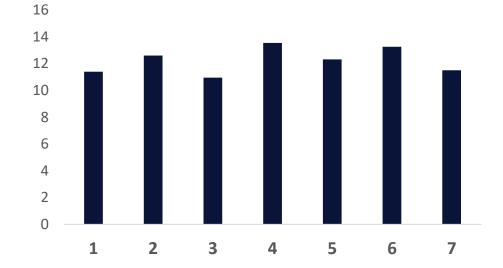
HARVEST (2020)



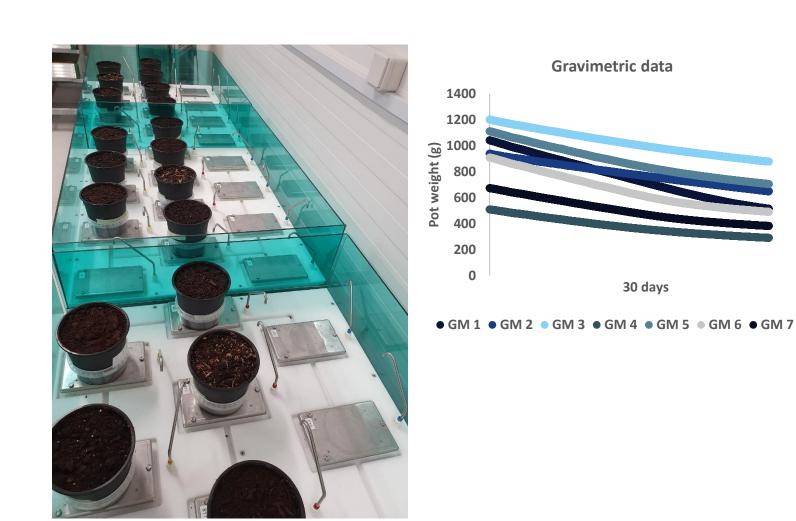
1	100% Strawberry substrate from Claus (Control)
2	100% Willow+Chickenpills(20%)
3	100% Willow+Grass
4	50% Willow+chickenpills and 50% Control substrate
5	50% Willow+Grass and 50% Control substrate
	Improved substrates from Pindstrup (50% Komposteret Pileflis ØKO +
6	50% peat)
	Improved substrates with fiber from Pindstrup (50% Træfibre Hobby +
7	50% peat)

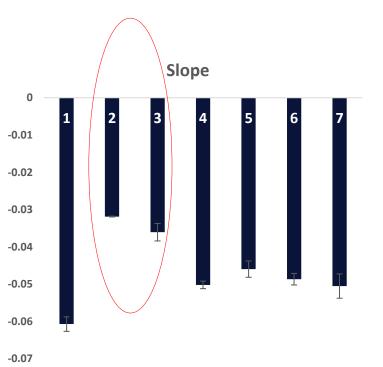

BIOSUBSTRATE 07 DECEMBER 2021

HARVEST (2021)


Average number of berries per pot (g)

BIOSUBSTRATE 07 DECEMBER 2021

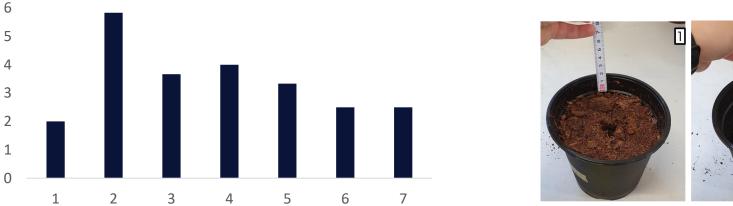


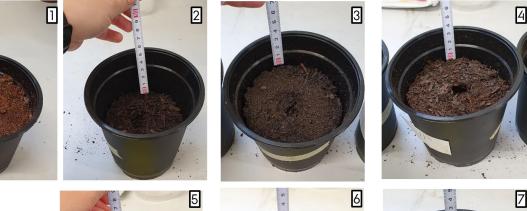

Average berry size per pot (g)

1	100% Strawberry substrate from Claus (Control)
2	100% Willow+Chickenpills(20%)
3	100% Willow+Grass
4	50% Willow+chickenpills and 50% Control substrate
5	50% Willow+Grass and 50% Control substrate
	Improved substrates from Pindstrup (50% Komposteret Pileflis ØKO +
6	50% peat)
	Improved substrates with fiber from Pindstrup (50% Træfibre Hobby +
7	50% peat)

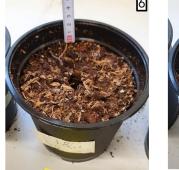
GRAVIMETRIC DATA

- Gravimetric platform
- Fully saturated pots
- 30 days at 32°C
- 3 repetitions 1l pots





BULK REDUCTION


Bulk reduction

1	100% Strawberry substrate from Claus (Control)	
2	100% Willow+Chickenpills(20%)	
3	100% Willow+Grass	
4	50% Willow+chickenpills and 50% Control substrate	
5	50% Willow+Grass and 50% Control substrate	
	Improved substrates from Pindstrup (50% Komposteret Pileflis ØKO +	
6	50% peat)	
	Improved substrates with fiber from Pindstrup (50% Træfibre Hobby +	
7	50% peat)	

7

CU

BIOSUBSTRATE 07 DECEMBER 2021

POSTDOC

THAYNA MENDANHA, PHD

SCREENING HERBS AND CUTTINGS

Plant materials

- Organic -Herbs (Basil) •
- Conventional -Cuttings of Salvie, Geranium and Kalanchoe ٠

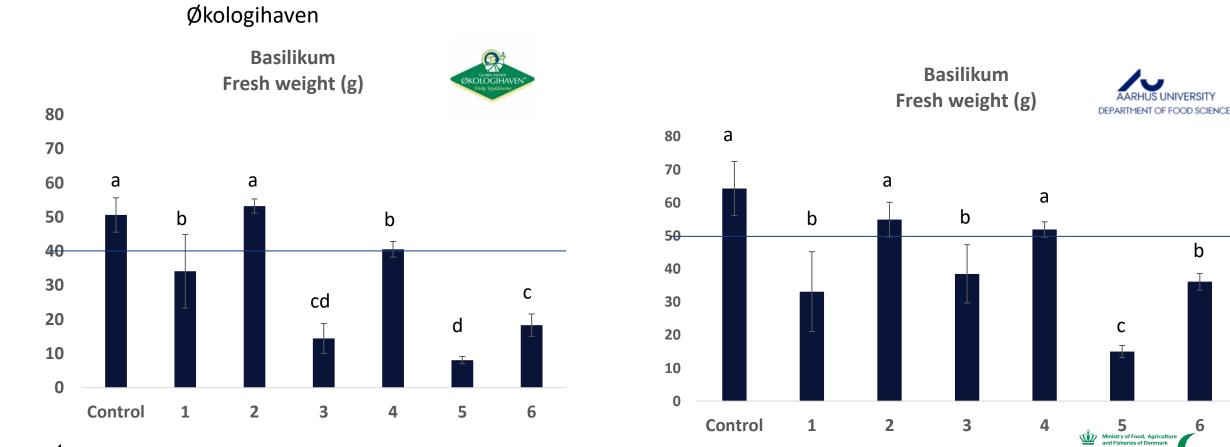
Methods

6-9 new mixes

- Leaf area •
- Fresh and dry weight ٠
- pH and EC ٠
- **Root evaluation** ٠

THAYNA MENDANHA, PHD

SCREENING HERBS AND CUTTINGS


Aim to replace 70% of Peat in the mix

Organic Basilikum

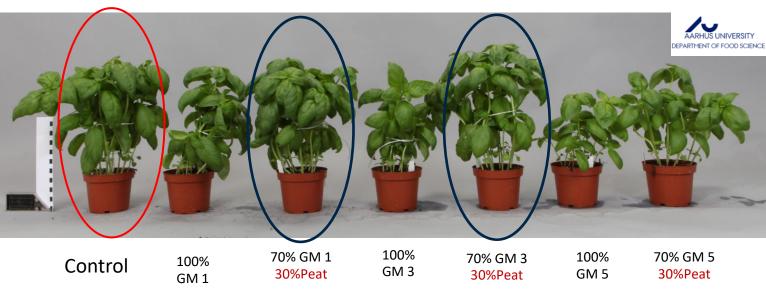
Ornamental cuttings

GN	Name	GM	Name
0	Control	0	Control
	100% willow composted with grass 50/50		100% willow composted with grass 50/50
			70% willow composted with grass 50/50 + 30% Raw peat
2	70% willow composted with grass 50/50 + 30% Raw peat		
2	100%(70% willow composted with grass and 30% mixed with extruded	3	100%(70% willow composted with grass and 30% mixed with extruded willow)
5	willow)		70%(70% willow composted with grass and 30% mixed with extruded willow) +
	70%(70% willow composted with grass and 30% mixed with extruded willow) + 30%raw peat	4	30%raw peat
4		5	100% Willow compost
F	100% Willow compost	6	70% Willow compost + 30% Raw peat
		7	55% Willow composted with grass + 15% Wood fibre + 30% Raw Peat
6	100% Willow compost + 30% Raw peat	RATE 2021	THAYNA MENDANHA, PHD POSTDOC 28

HERBS - BASILIKUM

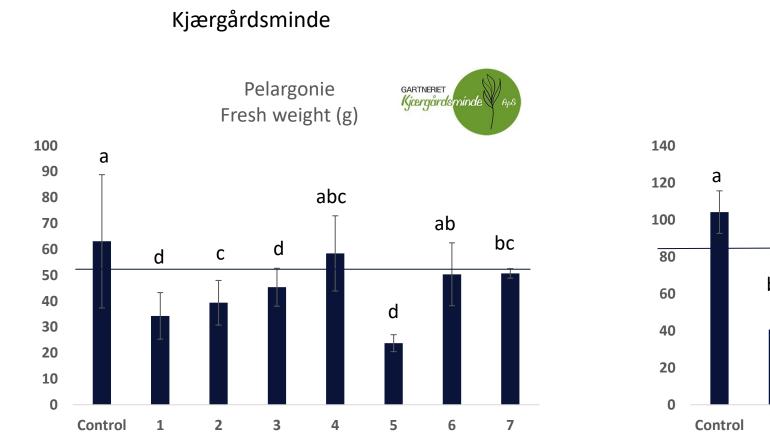
BIOSUBSTRATE 07 DECEMBER 2021 THAYNA MENDANHA, PHD POSTDOC

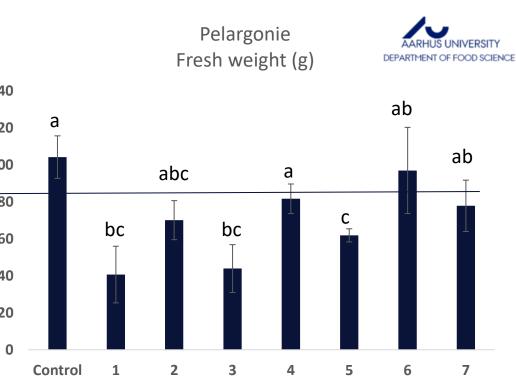
6


b

HERBS - BASILIKUM

GM	Name					
0	Control					
1	100% willow composted with grass 50/50					
2	70% willow composted with grass 50/50 + 30% Raw peat					
3	100%(70% willow composted with grass and 30% mixed with extruded willow)					
4	70%(70% willow composted with grass and 30% mixed with extruded willow) + 30%raw peat					
5	100% Willow compost					
6	100% Willow compost + <mark>30% Raw peat</mark>					

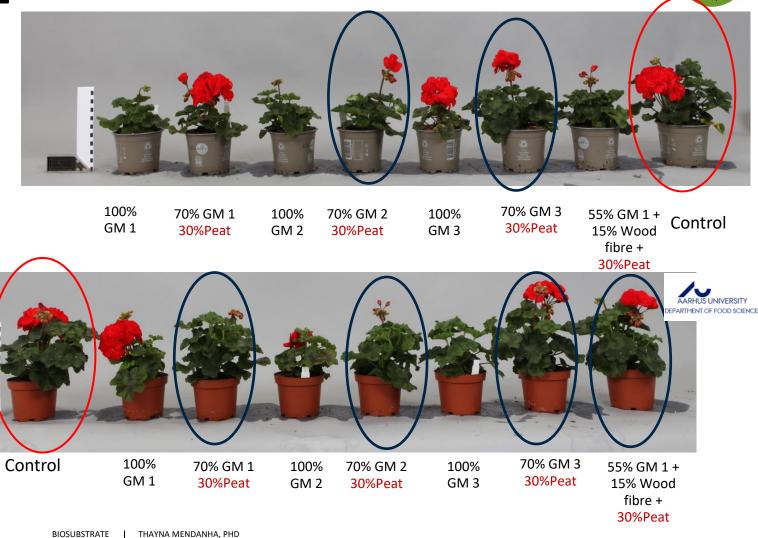

AUFOOD



Ministry of Food, Agriculture and Fisheries of Denmark

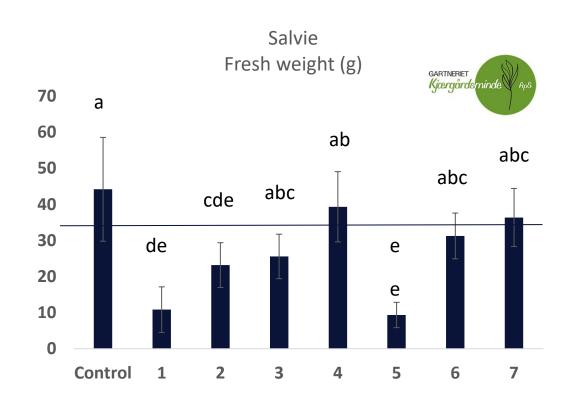
CUTTINGS - PELARGONIE

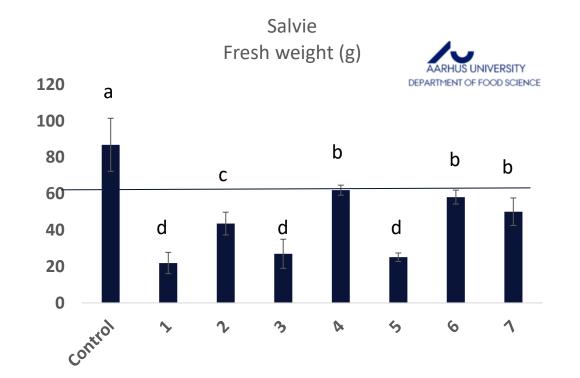
AUFOOD


BIOSUBSTRATE 07 DECEMBER 2021

CUTTINGS - PELARGONIE

GM	Name
0	Control
1	100% willow composted with grass 50/50
2	70% willow composted with grass 50/50 + 30% Raw peat
3	100%(70% willow composted with grass and 30% mixed with extruded willow)
4	70%(70% willow composted with grass and 30% mixed with extruded willow) + 30%raw peat
5	100% Willow compost
6	70% Willow compost + <mark>30% Raw peat</mark>
7	55% Willow composted with grass + 15% Wood fibre + 30% Raw Peat

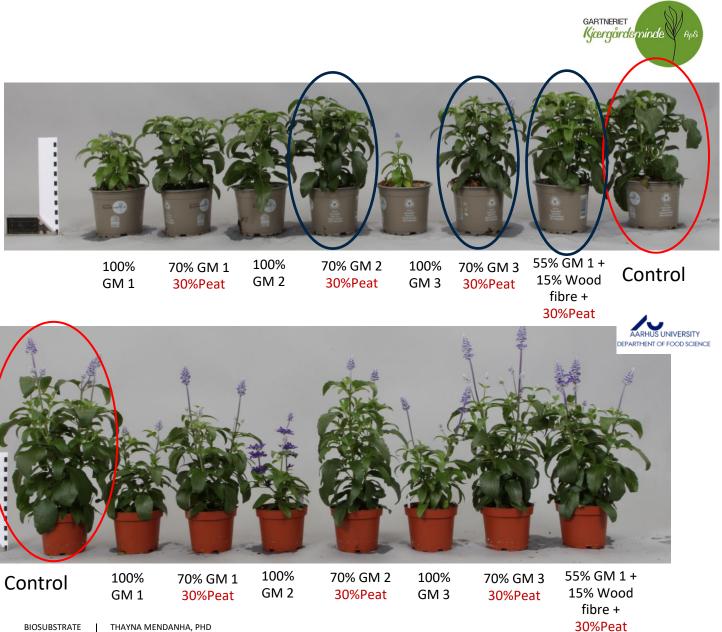




POSTDOC

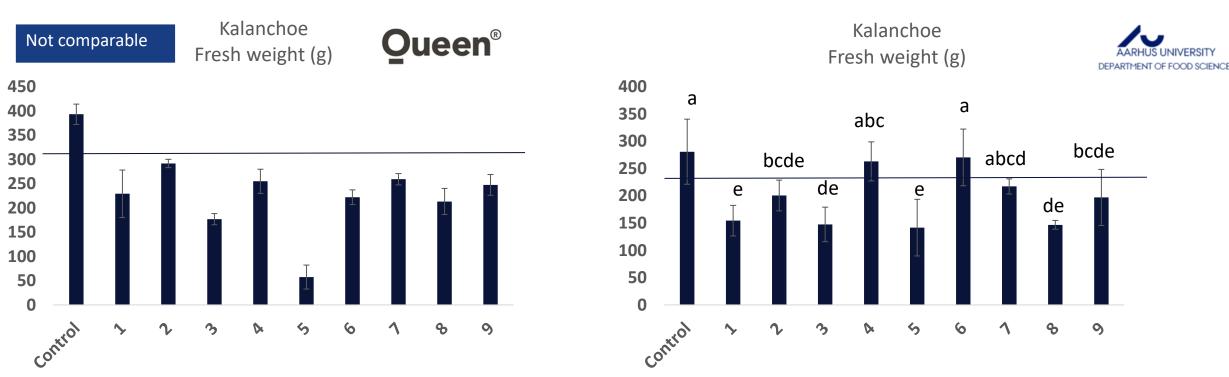
CUTTINGS - SALVIE

Kjærgårdsminde

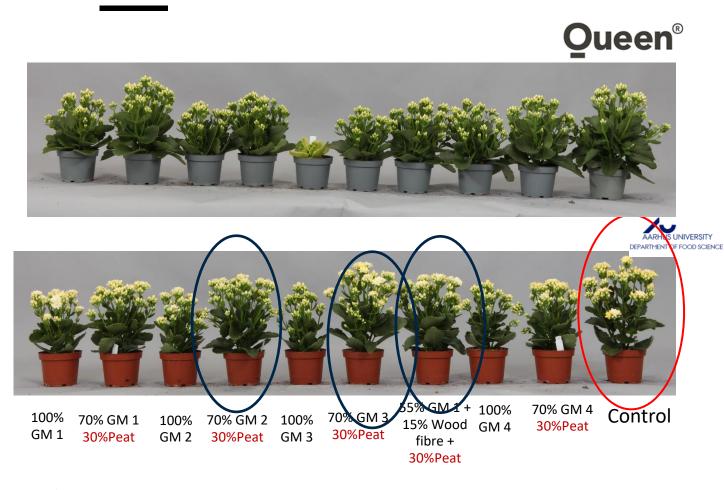


BIOSUBSTRATE T 07 DECEMBER 2021 F

CUTTINGS - SALVIE


GM	Name				
0	Control				
1	100% willow composted with grass 50/50				
2	70% willow composted with grass 50/50 + 30% Raw peat				
3	100%(70% willow composted with grass and 30% mixed with extruded willow)				
4	70%(70% willow composted with grass and 30% mixed with extruded willow) + 30%raw peat				
5	100% Willow microorganism (cold compost)				
6	70% Willow microorganism (cold compost) + 30% Raw peat				
7	55% Willow composted with grass + 15% Wood fibre + 30% Raw Peat				

BIOSUBSTRATE 07 DECEMBER 2021


CUTTINGS - KALANCHOE

CUTTINGS - KALANCHOE

GM	Name
1	100% willow composted with grass 50/50
2	70% willow composted with grass 50/50 + 30% Raw peat
3	100%(70% willow composted with grass and 30% mixed with extruded willow)
4	70%(70% willow composted with grass and 30% mixed with extruded willow) + 30%raw peat
5	100% Willow micoorganism
6	70% Willow micoorganism + 30% Raw peat
7	55% Willow and grass + 30% Peat + 15% Forest Gold
8	100% Willow and insect frass
9	70% Willow and insect frass + 30% Raw peat
10	Control

100% GM 7 BIOSUBSTRATE THAYNA MENDANHA, PHD 07 DECEMBER 2021 POSTDOC

POINTS TO BE CONSIDERED

- Better bioassays/processing to screen the full potential of new materials
- Nutrient and watering optimization need to be taken in account
- Particle size and material uniformity/compaction of some materials
- Solve pH and high salt level without blending with peat
- Find the right mix of components

CONCLUSIONS

- The bioassays used during this project could screen a large variety of new materials
- Dilution of GM with peat increased germination and biomass accumulation
- Adding 30% of "raw peat" can reduce pH to a commercial range
- Wood fibers, willow composted and the mix of willow composted + wood fibers can replace between 50
 - to 70% of peat in substrate mixes (commercial demonstration)

ACKNOWLEDGEMENTS

Karen Koefoed Petersen Senior Scientist (now at Schrool Medical) kkp@2-net.dk

Thomas Bak-Østerby Greenhouse technologist **tbo@food.au.dk**

DANISH TECHNOLOGICAL INSTITUTE

Søren Ugilt Larsen slar@teknologisk.dk

Svend Hoff hof@astech.dk

Aidan Smith aidan.smith@eng.au.dk

Anders Bach anders@nyvraa.dk 🐠 PINDSTRUP

Sven Erik Lanng sel@pindstrup.dk

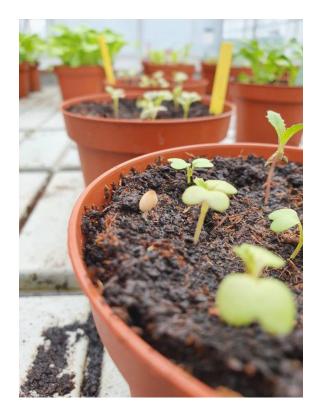
Marie T. Knudsen mariet.knudsen@agro.au.dk

Rong Zhou Assistant Professor rong.zhou@food.au.dk

Claus Hunsballe info@hunsballegront.dk

Gartneriet Kjærgårdsmine mk@kjaergaardsminde.dk

Connie Damgaard cd@gloriamundi.dk



יחט

Thank you Questions?

Thayna Mendanha

tm@food.au.dk

Ministry of Food, Agriculture and Fisheries of Denmark

40